CS153/hw2/bin/simulator.ml
jmug b8fc429f4d Fixed version of hw2
Signed-off-by: jmug <u.g.a.mariano@gmail.com>
2025-01-27 19:31:19 -08:00

319 lines
10 KiB
OCaml

(* X86lite Simulator *)
(* See the documentation in the X86lite specification, available on the
course web pages, for a detailed explanation of the instruction
semantics.
*)
open X86
(* simulator machine state -------------------------------------------------- *)
let mem_bot = 0x400000L (* lowest valid address *)
let mem_top = 0x410000L (* one past the last byte in memory *)
let mem_size = Int64.to_int (Int64.sub mem_top mem_bot)
let nregs = 17 (* including Rip *)
let ins_size = 8L (* assume we have a 8-byte encoding *)
let exit_addr = 0xfdeadL (* halt when m.regs(%rip) = exit_addr *)
(* The simulator memory maps addresses to symbolic bytes. Symbolic
bytes are either actual data indicated by the Byte constructor or
'symbolic instructions' that take up eight bytes for the purposes of
layout.
The symbolic bytes abstract away from the details of how
instructions are represented in memory. Each instruction takes
exactly eight consecutive bytes, where the first byte InsB0 stores
the actual instruction, and the next sevent bytes are InsFrag
elements, which aren't valid data.
For example, the two-instruction sequence:
at&t syntax ocaml syntax
movq %rdi, (%rsp) Movq, [~%Rdi; Ind2 Rsp]
decq %rdi Decq, [~%Rdi]
is represented by the following elements of the mem array (starting
at address 0x400000):
0x400000 : InsB0 (Movq, [~%Rdi; Ind2 Rsp])
0x400001 : InsFrag
0x400002 : InsFrag
0x400003 : InsFrag
0x400004 : InsFrag
0x400005 : InsFrag
0x400006 : InsFrag
0x400007 : InsFrag
0x400008 : InsB0 (Decq, [~%Rdi])
0x40000A : InsFrag
0x40000B : InsFrag
0x40000C : InsFrag
0x40000D : InsFrag
0x40000E : InsFrag
0x40000F : InsFrag
0x400010 : InsFrag
*)
type sbyte =
| InsB0 of ins (* 1st byte of an instruction *)
| InsFrag (* 2nd - 8th bytes of an instruction *)
| Byte of char (* non-instruction byte *)
(* memory maps addresses to symbolic bytes *)
type mem = sbyte array
(* Flags for condition codes *)
type flags =
{ mutable fo : bool
; mutable fs : bool
; mutable fz : bool
}
(* Register files *)
type regs = int64 array
(* Complete machine state *)
type mach =
{ flags : flags
; regs : regs
; mem : mem
}
(* simulator helper functions ----------------------------------------------- *)
(* The index of a register in the regs array *)
let rind : reg -> int = function
| Rip -> 16
| Rax -> 0
| Rbx -> 1
| Rcx -> 2
| Rdx -> 3
| Rsi -> 4
| Rdi -> 5
| Rbp -> 6
| Rsp -> 7
| R08 -> 8
| R09 -> 9
| R10 -> 10
| R11 -> 11
| R12 -> 12
| R13 -> 13
| R14 -> 14
| R15 -> 15
;;
(* Helper functions for reading/writing sbytes *)
(* Convert an int64 to its sbyte representation *)
let sbytes_of_int64 (i : int64) : sbyte list =
let open Char in
let open Int64 in
List.map
(fun n -> Byte (shift_right i n |> logand 0xffL |> to_int |> chr))
[ 0; 8; 16; 24; 32; 40; 48; 56 ]
;;
(* Convert an sbyte representation to an int64 *)
let int64_of_sbytes (bs : sbyte list) : int64 =
let open Char in
let open Int64 in
let f b i =
match b with
| Byte c -> logor (shift_left i 8) (c |> code |> of_int)
| _ -> 0L
in
List.fold_right f bs 0L
;;
(* Convert a string to its sbyte representation *)
let sbytes_of_string (s : string) : sbyte list =
let rec loop acc = function
| i when i < 0 -> acc
| i -> loop (Byte s.[i] :: acc) (pred i)
in
loop [ Byte '\x00' ] @@ (String.length s - 1)
;;
(* Serialize an instruction to sbytes *)
let sbytes_of_ins ((op, args) : ins) : sbyte list =
let check = function
| Imm (Lbl _) | Ind1 (Lbl _) | Ind3 (Lbl _, _) ->
invalid_arg "sbytes_of_ins: tried to serialize a label!"
| _ -> ()
in
List.iter check args;
[ InsB0 (op, args); InsFrag; InsFrag; InsFrag; InsFrag; InsFrag; InsFrag; InsFrag ]
;;
(* Serialize a data element to sbytes *)
let sbytes_of_data : data -> sbyte list = function
| Quad (Lit i) -> sbytes_of_int64 i
| Asciz s -> sbytes_of_string s
| Quad (Lbl _) -> invalid_arg "sbytes_of_data: tried to serialize a label!"
;;
(* It might be useful to toggle printing of intermediate states of your
simulator. Our implementation uses this mutable flag to turn on/off
printing. For instance, you might write something like:
[if !debug_simulator then print_endline @@ string_of_ins u; ...]
*)
let debug_simulator = ref false
(* override some useful operators *)
let ( +. ) = Int64.add
let ( -. ) = Int64.sub
let ( *. ) = Int64.mul
let ( <. ) a b = Int64.compare a b < 0
let ( >. ) a b = Int64.compare a b > 0
let ( <=. ) a b = Int64.compare a b <= 0
let ( >=. ) a b = Int64.compare a b >= 0
(* Interpret a condition code with respect to the given flags. *)
(* !!! Check the Specification for Help *)
let interp_cnd { fo; fs; fz } : cnd -> bool = fun x -> failwith "interp_cnd unimplemented"
(* Maps an X86lite address into Some OCaml array index,
or None if the address is not within the legal address space. *)
let map_addr (addr : quad) : int option = failwith "map_addr not implemented"
(* Your simulator should raise this exception if it tries to read from or
store to an address not within the valid address space. *)
exception X86lite_segfault
(* Raise X86lite_segfault when addr is invalid. *)
let map_addr_segfault (addr : quad) : int = failwith "map_addr_segfault not implemented"
(* Simulates one step of the machine:
- fetch the instruction at %rip
- compute the source and/or destination information from the operands
- simulate the instruction semantics
- update the registers and/or memory appropriately
- set the condition flags
We provide the basic structure of step function and helper functions.
Implement the subroutine below to complete the step function.
See step function to understand each subroutine and how they
are glued together.
*)
let readquad (m : mach) (addr : quad) : quad = failwith "readquad not implemented"
let writequad (m : mach) (addr : quad) (w : quad) : unit =
failwith "writequad not implemented"
;;
let fetchins (m : mach) (addr : quad) : ins = failwith "fetchins not implemented"
(* Compute the instruction result.
* NOTE: See int64_overflow.ml for the definition of the return type
* Int64_overflow.t. *)
let interp_opcode (m : mach) (o : opcode) (args : int64 list) : Int64_overflow.t =
let open Int64 in
let open Int64_overflow in
match o, args with
| _ -> failwith "interp_opcode not implemented"
;;
(** Update machine state with instruction results. *)
let ins_writeback (m : mach) : ins -> int64 -> unit =
failwith "ins_writeback not implemented"
;;
(* mem addr ---> mem array index *)
let interp_operands (m : mach) : ins -> int64 list =
failwith "interp_operands not implemented"
;;
let validate_operands : ins -> unit = function
| _ -> failwith "validate_operands not implemented"
;;
let crack : ins -> ins list = function
| _ -> failwith "crack not implemented"
;;
(* TODO: double check against spec *)
let set_flags (m : mach) (op : opcode) (ws : quad list) (w : Int64_overflow.t) : unit =
failwith "set_flags not implemented"
;;
let step (m : mach) : unit =
(* execute an instruction *)
let ((op, args) as ins) = fetchins m m.regs.(rind Rip) in
validate_operands ins;
(* Some instructions involve running two or more basic instructions.
* For other instructions, just return a list of one instruction.
* See the X86lite specification for details. *)
let uops : ins list = crack (op, args) in
m.regs.(rind Rip) <- m.regs.(rind Rip) +. ins_size;
List.iter
(fun ((uop, _) as u) ->
if !debug_simulator then print_endline @@ string_of_ins u;
let ws = interp_operands m u in
let res = interp_opcode m uop ws in
ins_writeback m u @@ res.Int64_overflow.value;
set_flags m op ws res)
uops
;;
(* Runs the machine until the rip register reaches a designated
memory address. Returns the contents of %rax when the
machine halts. *)
let run (m : mach) : int64 =
while m.regs.(rind Rip) <> exit_addr do
step m
done;
m.regs.(rind Rax)
;;
(* assembling and linking --------------------------------------------------- *)
(* A representation of the executable *)
type exec =
{ entry : quad (* address of the entry point *)
; text_pos : quad (* starting address of the code *)
; data_pos : quad (* starting address of the data *)
; text_seg : sbyte list (* contents of the text segment *)
; data_seg : sbyte list (* contents of the data segment *)
}
(* Assemble should raise this when a label is used but not defined *)
exception Undefined_sym of lbl
(* Assemble should raise this when a label is defined more than once *)
exception Redefined_sym of lbl
(* Convert an X86 program into an object file:
- separate the text and data segments
- compute the size of each segment
Note: the size of an Asciz string section is (1 + the string length)
due to the null terminator
- resolve the labels to concrete addresses and 'patch' the instructions to
replace Lbl values with the corresponding Imm values.
HINT: consider building a mapping from symboli Lbl to memory address
- the text segment starts at the lowest address
- the data segment starts after the text segment
HINT: List.fold_left and List.fold_right are your friends.
*)
let is_size (is : ins list) : quad = failwith "is_size not implemented"
let ds_size (ds : data list) : quad = failwith "ds_size not implemented"
let assemble (p : prog) : exec = failwith "assemble unimplemented"
(* Convert an object file into an executable machine state.
- allocate the mem array
- set up the memory state by writing the symbolic bytes to the
appropriate locations
- create the inital register state
- initialize rip to the entry point address
- initializes rsp to the last word in memory
- the other registers are initialized to 0
- the condition code flags start as 'false'
Hint: The Array.make, Array.blit, and Array.of_list library functions
may be of use.
*)
let load { entry; text_pos; data_pos; text_seg; data_seg } : mach =
failwith "load not implemented"
;;